48 research outputs found

    Special features of RAD Sequencing data:implications for genotyping

    Get PDF
    Restriction site-associated DNA Sequencing (RAD-Seq) is an economical and efficient method for SNP discovery and genotyping. As with other sequencing-by-synthesis methods, RAD-Seq produces stochastic count data and requires sensitive analysis to develop or genotype markers accurately. We show that there are several sources of bias specific to RAD-Seq that are not explicitly addressed by current genotyping tools, namely restriction fragment bias, restriction site heterozygosity and PCR GC content bias. We explore the performance of existing analysis tools given these biases and discuss approaches to limiting or handling biases in RAD-Seq data. While these biases need to be taken seriously, we believe RAD loci affected by them can be excluded or processed with relative ease in most cases and that most RAD loci will be accurately genotyped by existing tools

    DatasetE_n92

    No full text
    Alignment of sequence data, filtered according to the parameters listed in the file 'Dataset_details.csv

    vcf_Ref-aligned_Alatilabris

    No full text
    Directory containing the GATK output .vcf file from reference-aligned reads of A. latilabris. Directory contains 1 .vcf file and 1 index file

    Data from: Special features of RAD Sequencing data: implications for genotyping

    No full text
    RAD Sequencing (RAD-Seq) is an economical and efficient method for SNP discovery and genotyping. As with other sequencing-by-synthesis methods, RAD-Seq produces stochastic count data and requires sensitive analysis to develop or genotype markers accurately. We show that there are several sources of bias specific to RAD-Seq that are not explicitly addressed by current genotyping tools, namely restriction fragment bias, restriction site heterozygosity and PCR GC content bias. We explore the performance of existing analysis tools given these biases and discuss approaches to limiting or handling biases in RAD-Seq data. While these biases need to be taken seriously, we believe RAD loci affected by them can be excluded or processed with relative ease in most cases, and that most RAD loci will be accurately genotyped by existing tools

    Data from: High levels of interspecific gene flow in an endemic cichlid fish adaptive radiation from an extreme lake environment

    No full text
    Studying recent adaptive radiations in isolated insular systems avoids complicating causal events and thus may offer clearer insight into mechanisms generating biological diversity. Here, we investigate evolutionary relationships and genomic differentiation within the recent radiation of Alcolapia cichlid fish that exhibit extensive phenotypic diversification, and which are confined to the extreme soda lakes Magadi and Natron in East Africa. We generated an extensive RAD data set of 96 individuals from multiple sampling sites and found evidence for genetic admixture between species within Lake Natron, with the highest levels of admixture between sympatric populations of the most recently diverged species. Despite considerable environmental separation, populations within Lake Natron do not exhibit isolation by distance, indicating panmixia within the lake, although individuals within lineages clustered by population in phylogenomic analysis. Our results indicate exceptionally low genetic differentiation across the radiation despite considerable phenotypic trophic variation, supporting previous findings from smaller data sets; however, with the increased power of densely sampled SNPs, we identify genomic peaks of differentiation (FST outliers) between Alcolapia species. While evidence of ongoing gene flow and interspecies hybridization in certain populations suggests that Alcolapia species are incompletely reproductively isolated, the identification of outlier SNPs under diversifying selection indicates the radiation is undergoing adaptive divergence

    Data from: RAD-mapping reveals an evolving, polymorphic and fuzzy boundary of a plant pseudoautosomal region

    No full text
    How loss of genetic exchanges (recombination) evolves between sex chromosomes is a long-standing question. Suppressed recombination may evolve when a sexually antagonistic (SA) polymorphism occurs in a partially sex-linked, “pseudo-autosomal’ region (or “PAR”), maintaining allele frequency differences between the two sexes, and creating selection for closer linkage with the fully sex-linked region of the Y chromosome in XY systems, or the W in ZW sex chromosome systems. Most evidence consistent with the SA polymorphism hypothesis is currently indirect, and more studies of the genetics and population genetics of PAR genes are clearly needed. The sex chromosomes of the plant Silene latifolia are suitable for such studies, as they evolved recently and the loss of recombination could still be ongoing. Here, we used RAD sequencing to genetically map sequences in this plant, which has a large genome (~ 3 gigabases) and no available whole genome sequence. We mapped 83 genes on the sex chromosomes, and comparative mapping in the related species S. vulgaris supports previous evidence for additions to an ancestral PAR, and identified at least 12 PAR genes. We describe evidence that recombination rates have been reduced in meiosis of both sexes, and differences in recombination between S. latifolia families suggest ongoing recombination suppression. Large allele frequency differences between the sexes were found at several loci closely linked to the PAR boundary, and genes in different regions of the PAR showed striking sequence diversity patterns that help illuminate the evolution of the PAR

    DatasetJ_n91

    No full text
    Alignment of sequence data, filtered according to the parameters listed in the file 'Dataset_details.csv

    vcf_Ref-aligned_Andalalani

    No full text
    Directory containing the GATK output .vcf file from reference-aligned reads of A. ndalalani. Directory contains 1 .vcf file and 1 index file

    DatasetF_n48

    No full text
    Alignment of sequence data, filtered according to the parameters listed in the file 'Dataset_details.csv

    vcf_Ref-aligned_Agrahami

    No full text
    Directory containing the GATK output .vcf file from reference-aligned reads of A. grahami. Directory contains 1 .vcf file and 1 index file
    corecore